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How can we tell whether the total lepton number is  
conserved? 
A partial list of processes where the lepton number would be violated: 
 
Neutrinoless ββ decay:  (Z,A) -> (Z±2,A) + 2e(±), T1/2 > ~1026 y 
Muon conversion: µ- + (Z,A) -> e+ + (Z-2,A), BR < 10-12 
Anomalous kaon decays: K+ -> π-µ+µ+   , BR < 10-9 
Flux of νe from the Sun:  BR < 10-4 

Flux of νe from a nuclear reactor: BR < ? 
Production at LHC of a pair of the same charge leptons, with no missing energy, 
through production of doubly charged scalar that decays that way? 
 

Observing any of these processes would mean that the lepton 
number is not conserved, and that neutrinos are massive  
Majorana particles. 
 
It turns out that the study of the 0νββ decay is by far the most 
sensitive test of the total lepton number conservation, so we 
restrict further discussion to this process. 



Thanks to the fundamental discoveries of the last two 
decades we know that neutrino flavor is not conserved. 
From that it follows that neutrinos are massive and mixed 
The mass squared differences Δm2

solar, and Δm2
atmospheric 

have been measured quite accurately, and the 
three mixing angles (θ12, θ23, θ13) are known as well. 
However, we do not know the actual absolute neutrino mass, 
even though we do know that is is quite small, mν < few eV. 
That fact, by itself, raises a fundamental question. 



We know that  ν masses are much much smaller 
          than the masses of other fermions  

Is that a “Hint of” a new mass-generating mechanism? 
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Weinberg already in 1979 (PLR 43, 1566) showed that there is only  
one dimension d=5 gauge-invariant operator given the particle content  
of the standard model: 
                                            L(5)  = C(5)/Λ (LcεH)(HTεL) +h.c. 

Here Lc = LTC, where C is charge conjugation and ε = -iτ2. This 
operator clearly violates the lepton number by two units and  
represents neutrino Majorana mass  
 
                                             L(M) = C(5)/Λ v2/2 (νL

c νL) + h.c.
If Λ is larger than v, the Higgs vacuum expectation value, (v= 
246 GeV) the neutrinos will be `naturally’ lighter than the  
charged fermions. 
 
All other possible effective operators will be suppressed by higher 
powers of the energy scale Λ, i.e. Λ-n with n > 2. 

To solve the dilemma of `unnaturally’ small neutrino mass we can give  
up on renormalizability and add operators of dimension d > 4 that are  
suppressed by inverse powers of some scale Λ, but are consistent with  
the SM symmetries. 



 
	 The See-Saw (type I) Mechanism  was suggested already in ~1980 by 
Minkowski (1977), Gell-Mann, Ramond, and Slansky(1979), Yanagida(1979), 
Mohapatra and Senjanovic (1980). It is related to the finding of Weinberg 
(1979) that there is only one operator of dimension 5 (with only one power of 
the scale ΛLNV in the denominator). It represents a neutrino Majorana  mass 
realized in the see-saw model. 

ν

NR
Very 
heavy 
neutrino
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light 
neutrino}
{

In the light neutrino exchange, based on the above See-Saw type I, the 
decay rate is expressed as a product of three factors: 
 
									1/T1/20ν	=	G0ν(Q,Z)	|M0ν|2	|<mββ>|2,		<mββ>=|ΣiUei

2	mi|	,	
	
which represents a simple relation between the decay rate 
and the parameters of the neutrino mass matrix.  

mν ~ mD
2/MR with mD 

some typical Dirac fermion 
mass. NR is so heavy that 
it is unobservable 



Historically, there are 
 > 100 experimental 
limits  on T1/2 of the 
0νββ decay. Here are  
the records expressed  
as limits on <mββ>. 
Note the approximate 
linear slope vs time 
on such semilog plot. 
However, during the 
last decade the 
complexity and cost 
of such experiments 
increased dramatically. 
The constant slope is 
no longer obviously 
visible. 

History of 0νββ decay 

76Ge,	



<mββ> as a function of 
the mass of the 
lightest meutrino. 
Normal hierarchy in 
red, inverted  
hierarchy in green. 
The reach of the 
best experiments 
is indicated by the 
blue band. The  
sensitivity of the 
different tests is 
indicated in the 
right panel by the 
corresponding nuclei.   



If (or when) the 0νββ decay is observed two 
problems must be still resolved: 
 
a) What is the mechanism of the decay, 
   i.e., what kind of virtual particle is 
   exchanged between the affected 
   nucleons (or quarks)? 
b) How to relate the observed decay rate 
   to the fundamental parameters, i.e., 
   what is the value of the corresponding 
   nuclear matrix elements? 



The long-range, an exchange of a light 
Majorana neutrino, 
Neutrino mass is associated with the 
See-saw type I mechanism mν ~ v2/MN, 
where MN  is the very heavy neutrino 
mass. 

The short-range, an exchange of some 
heavy, often new, particle, it is therefore 
effectively a contact four nucleon vertex,  
represented by a dimension 9 operator. 
The physics of this type of lepton number 
violation is present in the see-saw type II 
or type III models. 

There are two possible, and distinct in physics, but not in 
their signal signature, mechanisms of 0νββ decay. In the 
following I will concentrate on the simplest light Majorana 
neutrino exchange. Observation of the 0νββ decay will be 
a signal of ``new physics” beyond the standard model in 
all cases. 3

tection of 0⌫�� decay is out of reach for the coming gen-
eration of experiments unless the decay is driven by the
exchange of a heavy particle, the existence of which we
have not yet discovered, or some other new physics (see
Sec. II B 2). If the hierarchy is inverted, the experiments
to take place in the next decade have a good chance to
see the decay, provided they have enough material. In-
deed, Fig. 1 shows that the current experimental limit
almost touches the upper part of the inverted-hierarchy
region.

How much material will be needed to completely cover
the region, so that we can conclude in the absence of a
0⌫�� signal that either the neutrino hierarchy is normal
or neutrinos are Dirac particles? And in the event of
a signal, how will we tell whether the exchange of light
neutrinos or some other mechanism is responsible? If it
is the latter, what is the underlying new physics? To
answer any of these questions, we need accurate nuclear
matrix elements.

B. Neutrinoless Double-Beta Decay

1. Light-neutrino Exchange

The beginning of this section closely follows Ref. [29],
which itself is informed by Ref. [38]. More detailed
derivations of the �� transition rates can be found in
Refs. [39–41].

The rate for 0⌫�� decay, if we assume that it is medi-
ated by the exchange of the three light Majorana neutri-
nos and the Standard Model weak interaction as repre-
sented in Fig. 2, is

[T 0⌫
1/2]

�1 =
X

spins

Z
|Z0⌫ |2�(Ee1+Ee2+Ef�Ei)

d3p1

2⇡3

d3p2

2⇡3
,

(1)
where Ee1, Ee2 and p1, p2 are the energies and momenta
of the two emitted electrons, Ei and Ef are the energies
of the initial and final nuclear states, and Z0⌫ is an am-
plitude proportional to an S-matrix element up to delta
functions that enforce energy and momentum conserva-
tion. The S matrix depends on the product of leptonic
and hadronic currents in the e↵ective low-energy semi-
leptonic Lagrangian density:

L(x) = GF /
p
2{e(x)�µ(1� �5)⌫e(x)J

µ
L(x)}+ h.c. , (2)

with Jµ
L the left-handed charge-changing hadronic cur-

rent density. Because Z0⌫ is second order in the weak-
interaction Lagrangian, it contains a lepton part that de-
pends on two space-time positions x and y, which are
contracted and ultimately integrated over:

X

k

e(x)�µ(1� �5)Uek⌫k(x) e(y)�⌫(1� �5)Uek⌫k(y)
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FIG. 2. Feynman diagram for 0⌫�� decay mediated by light-
neutrino exchange.

Here ⌫k is the Majorana mass eigenstate with mass mk

and Uek is the element of the neutrino mixing matrix
that connects electron flavor with mass eigenstate k. We
denote the charge conjugate of a field  by  c ⌘ i�2 ⇤

(in the Pauli-Dirac representation), and because ⌫k are
Majorana states we can take ⌫ck = ⌫k.
The contraction of ⌫k with ⌫ck turns out to be the usual

fermion propagator, so that the lepton part above be-
comes

� i

4

Z X

k

d4q

(2⇡)4
e�iq·(x�y)u(p1)�µ(1� �5)e

�i(p1·x+p2·y)

⇥ /q +mk

q2 �m2
k

�⌫(1 + �5)u
c(p2) U

2
ek , (4)

where q is the 4-momentum of the virtual neutrino. The
term with /q vanishes because the two currents are left
handed and if we neglect the very small neutrino masses
in the denominator, the decay amplitude becomes pro-
portional to

m�� ⌘

�����
X

k

mkU
2
ek

����� (5)

=
��m1|Ue1|2 +m2|Ue2|2ei(↵2�↵1) +m3|Ue3|2ei(�↵1�2�)

�� .

Here � is the so-called Dirac phase, and ↵1,↵2 are Majo-
rana phases that vanish if neutrinos are Dirac particles.
We have inserted the absolute value in Eq. (5) consis-
tently with the amplitude in Eq. (1), because the expres-
sion inside can be complex.
To obtain the full amplitude Z0⌫ , one must multi-

ply the lepton part above by the nuclear matrix ele-
ment of two time-ordered hadronic currents and inte-
grate the product over x and y. Because Jµ

L(x) =
eiHx0Jµ

L(x)e
�iHx0 (H is the hadronic Hamiltonian and

the current on the right-hand side is evaluated at time
x0 = 0), one can write the matrix element of an ordinary
product of hadronic currents between initial (i) and final
(f) nuclear states as

hf | Jµ
L(x)J

⌫
L(y) |ii =

X

n

hf | Jµ
L(x) |ni hn| J

⌫
L(y) |ii (6)

⇥ e�i(E
n

�E
f

)x0e�i(E
i

�E
n

)y0 ,
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sterile-neutrino exchange [70, 79–82], left-right symmet-
ric models [78, 83–85], and the exchange of supersym-
metric particles [86–89] are common in the literature.

Most of the new-physics mechanisms involve the ex-
change of heavy particles. However, the direct exchange
between nucleons, represented by the contact operator in
the bottom diagram in Fig. 4 in the heavy-particle limit,
occurs less often in most models than exchange between
pions or between a pion and a nucleon, shown in the
top and middle diagrams of the figure. In �EFT each
pion propagator carries a factor ⇤2

b/m
2
⇡, where ⇤b ⇠ 500

MeV�1 GeV is the chiral-symmetry breaking scale, at
which the e↵ective theory breaks down. Each ordinary
two-nucleon–pion (NN⇡) vertex comes with a derivative,
which results in a factor of p/⇤b or m⇡/⇤b, where p is a
typical momentum. Because the contact interaction has
no derivatives in most models, pion mediation enhances
the amplitude [90]. The two-pion mode at the top of
the figure is thus generally the dominant one. The one-
pion graph in the middle is nominally smaller by a factor
of ⇤b/m⇡ and the four-nucleon graph at the bottom is
smaller by another factor of the same quantity. The lead-
ing one-pion-exchange contribution to 0+ ! 0+ 0⌫��
decay is forbidden by parity symmetry, however, and so
the middle graph ends up contributing at the same order
as the contact term [90]. The counting is di↵erent for
nuclear forces, where the contact and one-pion exchange
interactions both appear at leading order [19, 20]. The
usual one-pion exchange interaction diagram contains a
derivative at each vertex; the derivatives counteract the
pion propagator, placing the diagram at the same chiral
order as the four-nucleon contact diagram. Two-pion ex-
change occurs at higher order. Computations of matrix
elements in supersymmetric models, even when they do
not rely explicitly on �EFT, support the statement that
pion-exchange modes are the most important [91–93].

The �EFT counting should be confirmed by explicit
calculations, as additional suppression or enhancement
may occur [94]. Lattice QCD studies that explicitly in-
corporate hadronic degrees of freedom are underway [95],
and will provide accurate input for the e↵ective field the-
ory treatment of these decay modes.

The four-nucleon contact vertex represented at the
bottom of Fig. 4 is further suppressed by nuclear struc-
ture. In the light-neutrino exchange 0⌫�� decay mode,
typical internucleon distances are of the order of few fem-
tometers. The exchange of heavy particles, with mass
mH & 100 GeV [90], requires nucleons to be closer to
each other and will thus be suppressed. Pions have a
mass of m⇡ ' 138 MeV ⇡ 1.4 fm�1, a distance com-
parable to the average internucleon spacing, and so the
graphs with pions propagating between nucleons will not
be suppressed. This behavior is apparent in potentials as-
sociated with the three modes of heavy-particle exchange.
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FIG. 4. Diagrams for the two-pion-exchange (top), one-pion-
exchange (middle) and contact (bottom) modes of 0⌫�� de-
cay caused by lepton-number violation associated with the
exchange of a heavy particle.

In momentum space, they have the form

hNN�GT/NN�T (|q|) ⇠ q

2 ,

h⇡�GT/⇡�T (|q|) ⇠
q

2

q

2 +m2
⇡

,

h⇡⇡�GT/⇡⇡�T (|q|) ⇠
q

2

(q2 +m2
⇡)

2 .

(16)

The first of these is clearly more strongly a↵ected at high
momentum transfer than the two pion-exchange modes.
It is worth noting that the induced pseudoscalar term
discussed in Sec. II B 1 also involves pion-exchange, in
combination with the usual exchange of a light neutrino.
There the pion brings no enhancement because the light-
neutrino is already long range.
In addition to being suppressed, the contact term is

di�cult to treat well. Its matrix elements depend on the
nuclear wave function at internucleon distances that are
less than the size of a nucleon. Our many-body methods
all have nucleons as elementary degrees of freedom and
may break down on scales at which the nucleon is not
a point particle. The four-nucleon contact term is thus
likely to carry a large uncertainty. It is fortunate that
terms involving pion exchange are usually more impor-
tant.
Within specific models, heavy-particle exchange with



The relative size of the heavy (AH) vs. light particle (AL) 
 exchange to the decay amplitude is (a crude estimate, due originaly to 
 Mohapatra) 
 
  AL ~ GF

2 mββ/<q2>,        AH ~ GF
2 MW

4/Λ5 , 
 
where Λ is the heavy scale and q ~ 100 MeV is the virtual 
neutrino momentum. 
 
For Λ ~ 1 TeV and mββ ~ 0.1 – 0.5 eV  AL/AH ~ 1, hence both 
mechanisms contribute equally. Thus, the existing 0νββ life-time 
limits constrain ΛLNV to be at least ~ TeV . That scale could 
be explored e.g. at LHC.  
 

It is well known that the amplitude for the light neutrino 
exchange scales as <mββ>. On the other hand, if heavy 

particles of scale Λ are involved the amplitude scales as 1/Λ5 

(dimension 9 operator) 

. 



Lets consider briefly the particle physics models in which 
0nbb-decay of the short-range category might exist. 
In them LNV violation is associated with low-scale (~TeV) 
physics, unlike see-saw with LNV at very high scale. 
	
These models include e.g. Left-Right Symmetric Model (LRSM) and RPV SUSY.	

Such models contain new, so far unobserved, particles that could be involved in 
the 0νββ decay as well as in the violation of the charged lepton flavor  
conservation. 

	



Low	scale	LNV:	LeC-Right	Symmetric	Model	(LRSM)

The model includes a doubly 
charged Higgs that couples 
to leptons as shown 

This is an example of 0νββ
decay mediated by this 
coupling. The amplitude scales 
like  

Another example is the exchange 
of heavy right-handed νR and two WR 
that scales like  

In both cases the amplitude 
scales like 1/Λ5 with 
Λ ~ MW(R) ~ MΔ ~ Mν (R) 



IllustraOon	II:	RPV	SUSY	[R	=	(-1)3(B-L)	+	2s		]

0νββ

The 0νββ amplitude scales 
as  
 
 
 
or in another example as 
 
 
 
 
Again with the characteristic  
1/Λ5 scaling 



The study of lepton flavor violation (LFV) can help to decide 
what  mechanism is responsible for the 0νββ decay if it is 
observed in a foreseeable future. The models that allow 
the existence of 0νββ decay at ΛLNV ~ 1 TeV often include 
an enhancement of LFV as well. 

This	is	based	on	“Lepton	number	violaOon	without	supersymmetry”	
Phys.Rev.D	70	(2004)	075007	
V.	Cirigliano,	A.	Kurylov,	M.J.Ramsey-Musolf,	and	P.V.	
and	on	“Neutrinoless	double	beta	decay	and	lepton	flavor	violaOon”	Phys.	Rev.	Led.	

93	(2004)	231802	
	V.	Cirigliano,	A.	Kurylov,	M.J.Ramsey-Musolf,	and	P.V.	
	
	



Bµ→eγ = Γ(µ→eγ)/Γ(µ→eνµνe) < 4.2x10-13 

Γ(µ- +(Z,A)	→	e-	+	(Z,A))	

Γ(µ- +(Z,A) → νµ + (Z-1,A)) 
Bµ→e =  

Lepton flavor violation (LFV) involving charged leptons has not been 
observed as yet. The most sensitive limits are for the decay  

New experiment, MEGII at PSI, aims to reach sensitivity 4x10-14. 
should reach sensitivity ~ 2 orders of magnitude better. 
 
The “muon conversion” is constrained by 

< 6x10-13 

Several proposals extending the sensitivity to ~10-17 have been proposed. 
 
The fact that neutrinos have finite mass and that they mix will 
not make these LFV processes observable, they are suppressed 
by (Δm2/Mw

2)2 ≤ 10-50. Hence observation of them would imply “new 
physics” unrelated (or only indirectly related) to neutrino mass. 



Summary so far: 
1)  Short-range contributions to the 0νββ decay with ~TeV  
     mass scale can lead to the decay  rate similar to that 
      of  light Majorana neutrino exchange with <mββ> ~ 0.1 - 1 eV. 
2)  In order to correctly interpret the experimental results 
     and plan new experiments, it is important to determine 
     the mechanism of the decay. Relation to LFV can help 
     in that respect.  
3)  Next generation of experiments on LFV will extend  
     the sensitivity considerably. In parallel, running of 
     LHC will shed light on the existence of particles with 
     ~TeV masses. 
      



In	double	beta	decay	two	neutrons	bound	in	the	ground	state	of	an	ini5al	even-
even	nucleus	are	simultaneously	transformed	into	two	protons	that	again	are		
bound	in	the	ground	state	of	the	final	nucleus.	
It	is	therefore	necessary	to	evaluate,	with	a	sufficient	accuracy,	the	ground	state	
wave	func5ons	of	both	nuclei,	and	evaluate	the	matrix	element	of	the	0νββ-decay	
operator	connecOng	them.		

This	cannot	be	done	exactly;	some	approximaOon	and/or	truncaOon	is	always	
needed.	Moreover,	unfortunately,	there	is	no	other	analogous	observable	that	can	be	
used	to	judge	the	quality	of	the	result.		

Nuclear Matrix Elements: 



Can	one	use	the	2νββ-decay	matris	elements	for	that?	
What	are	the	similariOes	and	differences?	
	
Both	2νββ and	0νββ operators	connect	the	same	states.	
Both	change	two	neutrons	into	two	protons.	
	
However,	in	2νββ the	momentum	transfer	q	<	few	MeV;	
thus	eiqr	~	1,	long	wavelength	approxima5on	is		
valid,	only	the	GT	operator	στ	need	to	be	considered.	
	
In	0νββ q	~	100-200	MeV,	eiqr	=	1	+	many	terms,	there	
is	no	natural	cutoff	in	that	expansion.	
	
Explaining	2νββ-decay	rate	is	necessary	but	not	sufficient

On	the	other	hand	since	q	is	high	in	0νββ the	closure	approxima5on	
is	adequate,	while	in	the	2νββ we	need	to	sum	over	all	1+	intermediate	
states	in	the	odd-odd	nucleus.



Transi5on	operator	contains	τ+
1τ+

2 	that	change	neutrons	into	protons	plus	in	the	GT	part	
σ1σ2	and	in	the	tensor	part	operator	S12.		Each	of	these	parts	in	mulOplied	by	the	`neutrino	
potenOal’	(Fourier	transform	of	the	propagator)	that	
introduces	dependence	on	the	radial	distance	between	the	nucleons.	
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ordinary β decay and use the concept of quenching of the GT strength [21]. We shall discuss that issue in more detail
later.

IV. OPERATOR OF THE 0νββ DECAY

The 0ν decay rate associated with the nonvanishing value of mν is of the general form

ω0ν = 2πΣspin|R0ν |2δ(Ee1 + Ee2 + Ef − Mi)d3pe1d
3pe2 , (10)

where Ef is the energy of the final nucleus and R0ν is the transition amplitude including both the lepton and nuclear
parts.

After substitution for the neutrino propagator and integration over the virtual neutrino momentum, the lepton
amplitude acquires the form

−iδjk

∫
d4q

(2π)4
e−iq(x−y)

q2 − m2
j

ē(x)γρ
1
2
(1 − γ5)(qµγµ + mj)

1
2
(1 − γ5)γσeC(y) . (11)

From the commutation properties of the gamma matrices it then follows that the decay amplitude for purely left-
handed lepton currents is proportional to the neutrino Majorana mass mj. Integration over the virtual neutrino
energy leads to the replacement of the propagator (q2 − m2

j)−1 by the residue π/ωj with ωj = (q⃗ 2 + m2
j)1/2.

Finally, the integration over the space part dq⃗ leads to an expression for the ”neutrino potential” that appears in
the corresponding nuclear transition operator,

H(r, Em) =
R

2π2

∫
dq⃗

ω

1
ω + Am

eiq⃗·r⃗ =
2R

πr

∫ ∞

0
dq

q sin(qr)
ω(ω + Am)

=
2R

π

∫ ∞

0
dq

j0(qr)q
q + Am

. (12)

where the nuclear radius R = 1.2A1/3 fm was added as an auxiliary factor so that H becomes dimensionless. A
corresponding 1/R2 compensates for this auxiliary quantity in the phase space formula. The weak dependence on the
excitation energy of the virtual intermediate odd-odd nucleus appears in Am = Em −Ei + Ee ≡ Em − (Mi −Mf )/2.

The momentum of the virtual neutrino is determined by the uncertainty relation q ∼ 1/r, where r ≤ R is a typical
spacing between two nucleons. We will show later that in fact the relevant values of r are only r ≤ 2-3 fm, so that
the momentum transfer q ∼ 100-200 MeV. For the light neutrinos the neutrino mass mj can then be safely neglected
in the potential H(r). (Obviously, for heavy neutrinos, with masses Mj ≫ 1 GeV a different procedure is necessary.)
Also, given the large value of q the dependence on the difference of nuclear energies Em −Ei is expected to be rather
weak and the summation of the intermediate states can be performed in closure for convenience. This approximation
H(r, Em) ≃ H(r, Ē) is, in fact, typically used in the evaluation of the M0ν .

It is worthwhile to test the validity of this approximation. Such test can be conveniently performed within the
QRPA, where the sum over the intermediate states can be easily explicitly carried out. In this context one can ask
two questions: How good is the closure approximation? And what is the value of the corresponding average energy?
In Fig. 4 we illustrate the answers to these questions. The QRPA matrix elements evaluated by explicitly summing
over the virtual intermediate states quoted in the caption can be compared with the curves obtained by replacing all
intermediate energies with a constant Ē, which is varied there between 0 and 12 MeV. One can see, first of all, that
the M0ν changes modestly, by less than 10% when Ē is varied as expected given the relative sizes of q and Ē and, at
the same time, that the exact results are quite close, but somewhat larger, than the closure ones. Thus, employing
the closure approximation is appropriate for the evaluation of M0ν even though it apparently slightly underestimates
the M0ν values.

The neutrino potential in the Eq. (12) was defined assuming that the nucleons are point particles. That is not true,
however, and thus it is necessary to include a corresponding correction in the definition of H(r, Ē). It is customary
to approximate this correction in the form of the dipole type form factor

fFNS =
1

(
1 + q2

M2
A

)2 , (13)

with MA = 1.09 GeV. Varying MA in the interval 1.0-1.2 GeV makes little difference.

fns….nucleon finite size 
hot…higher order terms 
        in weak currents 



Shell model evaluation, Menendez et al., Nucl.Phys. A818, 139 (2009) 

The	radial	dependence	of	M0ν (M0ν	=	∫C(r)dr)	for	the	indicated	nuclei.	
Only	distances	r	<	2-3	fm	contribute,	substanOally	than	Rnucl.		
(IdenOcal	result	obtained	in	QRPA).	Nuclear	finite	size	and	short	range	
repulsion	need	to	be	included	carefully.	



Momentum distribution of the contributions  to M0ν. 
This example is for 136Xe with QRPA. The <p2>1/2 is 15%-20% larger  
here than in the nuclear shell model.   

1bd only 

Range when 2bd are 
included, <p2>1/2 = 225 MeV  

From Engel, Simkovic and Vogel, PRC 89, 064308 (2014)  

	(M0ν	=	∫C(p)dp).	



Basic	procedures:	Treat	the	nucleus	as	a	collecOon	
of	protons	and	neutrons	bound	in	a	potenOal	well,	
and	interacOng	through	an	effecOve	interacOon.	
The	procedure	consists	of	several	steps:	

1)  Define	the	valence	space	
2)	Derive	the	effec5ve	hamiltonian	Heff	using	the	
				nucleon-nucleon	interac5on	
				plus	some	empirical	nuclear	
				data.	
3)  Solve	the	equa5ons	of		
				mo5on	to	obtain	the	ground	state	wave	

func5ons		



Two	complementary	procedures	are	commonly	used:	
a)  Nuclear	shell	model	(NSM)	
b)  Quasipar5cle	random	phase	approxima5on	(QRPA)	

In	NSM	a	limited	valence	space	is	used	but	all	configuraOons	of		
valence	nucleons	are	included.	Describes	well	properOes	of	low-lying		
nuclear	states.	Technically	difficult,	thus	only	few	0νββ	calculaOons.	
	
In	QRPA	a	large	valence	space	is	used,	but	only	a	class	of	configuraOons		
is	included.	Describes	collecOve	states,	but	not	details	of	dominantly		
few-parOcle	states.	RelaOvely	simple,	thus	many	0νββ	calculaOons.	
	
CalculaOons	of	the	0νββ nuclear	matrix	elements	were	also	performed		
in	the	InteracOng	Boson	Model	(IBM-2)	as	well	as,	more	recently,	
using	the	Energy	Density	FuncOonal	method	(or	Generator	Coordinate	
Method)	that	describes	in	parOcular	quite	well	the	effects	related	
to	the	nuclear	deformaOon	and	includes	essenOally	unrestricted	
valence	single	parOcle	space.	



82Se 

130Te 

Why it is difficult to calculate 
the matrix elements accurately? 
 
Contributions of different 
angular momenta J  of the 
neutron pair that is transformed  
in the decay into the proton pair  
with the same J. 
 
Note the opposite signs, and thus  
tendency to cancel, between the  
J = 0 (pairing) and the J≠ 0 
(ground state correlations) parts. 
 
The same restricted s.p. space  
is used for QRPA and NSM.  
There is a reasonable  
qualitative agreement  
between the two methods 

J 



Figure 2 compares different NME calculations for 48Ca.
The total NME value in the sdpf configuration space,
M0ν ¼ 0.96 − 1.18, is about 30% larger than the pf-shell
GXPF1B result or other shell-model pf-shell valuesM0ν ¼
0.78 − 0.92 [15–17]. This enhancement has important
consequences for 48Ca 0νββ decay experiments, as the
decay lifetime is almost halved. The present NME value is
15% smaller than the result obtained by a pf-shell
calculation including perturbatively the effect of the orbi-
tals outside the pf configuration space, M0ν ¼ 1.30 [50].
In contrast, Fig. 2 shows that the present NME value is
considerably smaller than IBM [25], nonrelativistic [26] or
relativistic [27] EDF values, and significantly larger than
the QRPA result [22].
In the following, we analyze the NME to understand the

mechanismsresponsiblefortheenhancementfoundinthe2ℏω
calculations, and explore possible implications for heavier
0νββ decay candidates. The operator for the NME can be
decomposed in terms of the angularmomentumand parity Jπ,
to which the two-decaying neutrons are coupled [18]:

M0ν ¼
X

J

h0þf j
X

i≤j;k≤l
MJ

ij;kl½ðâ
†
i â

†
jÞJðâkâlÞJ&0j0þi i; ð3Þ

where i, j, k, l label single-particle orbitals. This decom-
position is shown in Fig. 3 for 0ℏω (pf) and 2ℏω (sdpf)
calculations. The leading contribution to 0νββ decay comes
from 0þ-coupled pairs, while other Jπ combinations suppress
theNME.Figure3 shows that themain differencebetween the
0ℏω and 2ℏω results is a 20% increase in the contributions of
0þ pairs. In addition, only the 2ℏω calculation allows for
negative-parity pairs, but their contribution is small. As also
suggested inRef. [52], these findings indicate that theNME is
enhanced by the pairing correlations, which induce 0þ-pair
excitations, introduced by the additional sd-shell orbitals.
We further decompose the NME in terms of the orbitals

(sd or pf shell) occupied by the two 48Ca neutrons and two
48Ti protons involved in the decay:

M0ν ¼ M0ν
1 þM0ν

2 þM0ν
3 þM0ν

4 þM0ν
5 ; ð4Þ

with the M0ν components, sketched in Fig. 4, defined as

M0ν
1 ¼h0þf jÔ

0νðppfppf; npfnpfÞj0þi i;

M0ν
2 ¼h0þf jÔ

0νðppfppf; nsdnsdÞj0þi i;

M0ν
3 ¼h0þf jÔ

0νðpsdpsd; npfnpfÞj0þi i;

M0ν
4 ¼h0þf jÔ

0νðpsdpsd; nsdnsdÞj0þi i;

M0ν
5 ¼h0þf jÔ

0νðpsdppf; nsdnpfÞj0þi i; ð5Þ

where ni (pi) stands for neutrons (protons) in the i shell of
48Ca (48Ti). Table II shows the different components in
Eq. (4) for the SDPFMU-DB 2ℏω calculation, as well as

TABLE I. NME value for the 48Ca 0νββ decay. The pf-shell calculation with GXPF1B is compared to the sdpf 2ℏω results obtained
with the SDPFMU-DB and SDPFMU interactions. Total values (M0ν) are shown together with Gamow-Teller (M0ν

GT), Fermi (M0ν
F ), and

tensor (M0ν
T ) parts. Argonne- and CD-Bonn-type short-range correlations (SRC) are considered.

GXPF1B SDPFMU-DB SDPFMU

SRC M0ν
GT M0ν

F M0ν
T M0ν M0ν

GT M0ν
F M0ν

T M0ν M0ν
GT M0ν

F M0ν
T M0ν

None 0.776 −0.216 −0.077 0.833 0.997 −0.304 −0.067 1.118 0.894 −0.291 −0.068 1.007
CD-Bonn 0.809 −0.233 −0.074 0.880 1.045 −0.327 −0.065 1.183 0.939 −0.313 −0.065 1.068
Argonne 0.743 −0.213 −0.075 0.801 0.953 −0.300 −0.065 1.073 0.852 −0.288 −0.068 0.963

FIG. 2. Comparison of NME values for the 48Ca 0νββ decay.
The present shell-model results in the sdpf space (SM sdpf: left
SDPFMU-DB, right SDPFMU) are compared to pf-shell results
(SM pf: left [17], right [15]), pf-shell result plus a perturbative
calculation of the effect of orbitals outside the pf shell (SM
MBPT) [50], QRPA [22], IBM [25], and EDF (left: nonrelativ-
istic [26], right: relativistic [27]) calculations. The range between
double horizontal bars covers results including a different type of
short-range correlations (Argonne, CD-Bonn, UCOM [51]) and
without them.

FIG. 3. NME decomposition in terms of the angular momentum
and parity Jπ of the pair of decaying neutrons, Eq. (3). 0ℏω
(GXPF1B) and 2ℏω (SDPFMU-DB) results are compared,
without short-range correlations.

PRL 116, 112502 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

18 MARCH 2016

112502-3

Here is an analogous figure now from the recent application of 
NSM and for 48Ca when two oscillator shells are included  
(this is so far only possible in this case). 
The final values of NME are 0.997 and 1.118 for one or two 
shells. The short range correlations are not included in this 
illustration. 
Figure from Iwata et al., Phys,Rev.Lett. 116, 112502(2016)) 



Full matrix element 

The radial dependence of  
M0ν for the three indicated 
nuclei. The contributions 
summed over all components 
ss shown in the upper panel. 
The `pairing’ J = 0 and 
`broken pairs’ J ≠ 0 parts 
are shown separately below. 
Note that these two parts 
essentially cancel each other 
for r > 2-3 fm. This is a 
generic behavior. Hence 
the treatment of small  
values of r and large values 
of q are quite important.  

C(r) 

CJ(r) 

M0ν = ∫C(r)dr 

pairing part 

broken pairs part 

total 



The finding that the relative distances r < 2- 3 fm, and correspondingly 
that the momentum transfer q > ~100 MeV means that one needs to 
consider a number of effects that typically play a minor role in the 
structure of nuclear ground states: 
a)  Short range repulsion 
b)  Nucleon finite size 
c)  Induced weak currents (Pseudoscalar and weak magnetism) 

Each of these, with the present treatment, causes correction 
(or uncertainty) of ~20% in the 0νββ matrix element. 
 
There is a consensus now that these effects must be included and 
even how they should be treated. Nevertheless, they obviously 
contribute a substantially uncertainty to the calculated values.  
 
However, if the spread between the matrx element values 
evaluated using different nuclear models can be treated as 
a measure of uncertainty, it would dominate the final uncertainty 
by a big factor. 
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FIG. 5. Top panel: Nuclear matrix elements (M0⌫) for 0⌫��
decay candidates as a function of mass number A. All the
plotted results are obtained with the assumption that the ax-
ial coupling constant gA is unquenched and are from di↵erent
nuclear models: the shell model (SM) from the Strasbourg-
Madrid (black circles) [111], Tokyo (black circle in 48Ca) [112],
and Michigan (black bars) [82] groups; the interacting bo-
son model (IBM-2, green squares) [107]; di↵erent versions
of the quasiparticle random-phase approximation (QRPA)
from the Tübingen (red bars) [113, 114], Jyväskylä (orange
times signs) [81], and Chapel Hill (magenta crosses) [115]
groups; and energy density functional theory (EDF), relativis-
tic (downside cyan triangles) [116, 117] and non-relativistic
(blue triangles) [118]. QRPA error bars result from the use of
two realistic nuclear interactions, while shell model error bars
result from the use of several di↵erent treatments of short
range correlations. Bottom panel: Associated 0⌫�� decay
half-lives, scaled by the square of the unknown parameter
m�� .

operator �⌧ , which is equivalent to using an e↵ective
value of the axial coupling constant that multiplies this
operator in place of its “bare” value of gA ' 1.27. This
phenomenological modification is sometimes referred to
as the “quenching” or “renormalization” of gA. In Sec. IV
we review possible sources of the renormalization, none
of which has yet been shown to fully explain the e↵ect,
and their consequences for 0⌫�� matrix elements.

A. Shell Model

The nuclear shell model is a well-established many-
body method, routinely used to describe the properties
of medium-mass and heavy nuclei [119, 122, 123], includ-
ing candidates for ��-decay experiments. The model,
also called the “configuration interaction method” (par-
ticularly in quantum chemistry [124, 125]), is based on
the idea that the nucleons near the Fermi level are the
most important for low-energy nuclear properties, and
that all the correlations between these nucleons are rele-
vant. Thus, instead of solving the Schrödinger equation
for the full nuclear interaction in the complete many-
body Hilbert space, one restricts the dynamics to a lim-
ited configuration space (sometimes called the valence
space) containing only a subset of the system’s nucleons.
In the configuration space one uses an e↵ective nuclear
interaction He↵, defined (ideally) so that the observables
of the full-space calculation are reproduced, e.g.

H |�ii = Ei |�ii ! He↵ |�̄ii = Ei |�̄ii . (17)

The states |�ii and |�̄ii are defined in the full space and
the configuration space, respectively, and have associated
energy Ei.
The configuration space usually comprises only a rela-

tively small number of “active” nucleons outside a core of
nucleons that are frozen in the lowest-energy orbitals and
not included in the calculation. The active nucleons can
occupy only a limited set of single-particle levels around
the Fermi surface. Many-body states are linear combi-
nations of orthogonal Slater determinants | ii (usually
from a harmonic-oscillator basis) for nucleons in those
single-particle states,

|�̄ii =
X

j

cij | ji , (18)

with the cij determined by exact diagonalization of He↵.
The shell model describes ground-state nuclear proper-

ties such as masses, separation energies, and charge radii
quite well. It also does a good job with low-lying excita-
tion spectra and with electromagnetic moments and tran-
sitions [119, 122, 123]. The wide variety of successes over
a broad range of isotopes reflects the shell model’s ability
to capture both the excitation of a single particle from
an orbital below the Fermi surface to one above, in the
spirit of the original naive shell model [126, 127], and col-
lective correlations that come from the coherent motion
of many nucleons in the configuration space. The exact
diagonalization of He↵ means that the shell model states
|�̄ii contain all correlations (isovector and isoscalar pair-
ing, quadrupole collectivity, etc.) that can be induced by
He↵.
This careful treatment of correlations, on the other

hand, restricts the range of shell model to relatively
small configuration spaces, at present those for which the
Hilbert-space dimension is less than about (1011) [128,
129]. For this reason most shell model calculations of

Figure from review by Engel and Menendez 

There are many evaluations of the 
matrix elements M0ν using different 
methods and thus different 
approximations. It is difficult 
to conclude which of them is most 
realistic; each has its strong and 
weak points. 
 
The spread of the M0ν values for 
each nucleus is ~ 3. On the other 
hand, there is relatively little 
variation from one nucleus to the 
next. 
 
In the lower panel the corresponding 
half-lives for mββ = 1 meV are shown. 
Obviously, the spread now is ~10, 
but again, there is no clear  
preference for any of the candidate 
nuclei.  
 



The 2ν matrix elements, unlike the 0ν ones, exhibit pronounced shell 
effects. They vary relatively fast as a function of Z or A. 



Figure from Caurier et al., PRL 100, 052503 (2008) 

Shell model (black dots) M0ν are usually smallest, presumably for two reasons. 
1)  All configurations of valence nucleons are included. Complicated states with high  
     seniority, that are absent in other approaches, further decrease the  M0ν values. 
2)  Only limited number of orbits can be included. In particular the spin-orbit partners 
      are not included, except in 48Ca. Perturbation tests suggest that including additional 
      orbits would increase the M0ν values. 
 



The EDF/GCM (Energy Density Functional/Generator Coordinate Method)  
(blue triangles) gives typically largest M0ν values. It has several advantages, 
large s.p. space, realistic treatment of deformation and standard pairing, 
projection on the correct angular momentum and particle number. 
 
However, it does not include the isoscalar pairing(at least for now) , that is 
known to substantially reduce the M0ν values.  

IllustraOon	of	the	effect	of	isoscalar	
pairing	for	the	GT	(largest)	part	of	M0ν. 
These isotope chains are not real 
ββ decay candidates, but the 
calculation shows that the effect 
is quite general. 
 
From Menendez et al., PRC 93,014305(2016)
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where |JMK; NZ; qi ⌘ P̂ J
MK P̂N P̂Z |'(q)i and q is short

for the set of all qi. Here, the P̂ 0s are projection operators
onto states with well-defined angular momentum J and
z-component M , neutron number N , and proton number
Z [23]. The weight functions fJK

q� , where � enumerates
states with the same quantum numbers, follow from the
Hill-Wheeler equations [23]

X

K0,q0

n

HJ
KK0(q; q0) � EJ

�N J
KK0(q; q0)

o

fJK0

q0� = 0, (7)

where the Hamiltonian kernel HJ
KK0(q; q0) and the norm

kernel N J
KK0(q; q0) are given by

HJ
KK0(q; q0) = h'(q)|He↵P̂ J

KK0 P̂N P̂Z |'(q0)i ,

N J
KK0(q; q0) = h'(q)| P̂ J

KK0 P̂N P̂Z |'(q0)i .
(8)

To solve Eq. (7), we first diagonalize the norm kernel N
and then use the nonzero eigenvalues and correspond-
ing eigenvectors to construct a set of “natural states.”
Finally, we diagonalize the Hamiltonian in the space of
these natural states to obtain the GCM states | J

NZ�i
(for details, see Refs. [24, 25]). We carry out this entire
procedure in both the initial and final nucleus, using the
lowest J = 0 states in each as the ground states between
which we sandwich the 0⌫�� operator to obtain the ma-
trix element M0⌫ from Eq. (1).

III. TESTS IN A SINGLE SHELL

Before undertaking a two-major-shell calculation, we
need to test our GCM with a realistic interaction in a
model space small enough to allow exact diagonaliza-
tion. We begin by performing GCM calculations in the
pf -shell, comprising the 0f7/2, 0f5/2, 1p3/2, and 1p1/2
orbits. Using use the KB3G interaction [26], which ac-
counts successfully for the spectroscopy, electromagnetic
and Gamow-Teller transitions, and deformation of pf -
shell nuclei [27], we compute the 0⌫�� matrix elements
of 48Ca, 54Ti, and 54Cr. Although the last two nuclei
are not candidates for an experiment, they o↵er oppor-
tunities to test the GCM. Because these nuclei show no
evidence of triaxial deformation, we need only use the ax-
ial quadrupole moment q1 ⌘ hQ20i and isoscalar pairing
amplitude � ⌘ q3 = 1/2 hP0 + P †

0 i as generator coordi-
nates for the computation of M0⌫

GT .
Figure 1 shows the GT matrix elements that result

from this procedure, alongside those coming from exact
diagonalization. To highlight the e↵ects of isoscalar pair-
ing in the GCM, we present the results of two separate
GCM calculations. In the first, as in Ref. [16], we set all
the two-body matrix elements of the Hamiltonian with
angular momentum J = 1 and isospin T = 0 to zero,
because those are the ones through which isoscalar pair-
ing acts. The resulting GT matrix elements overestimate
the exact one substantially. In the second calculation, we
use the full KB3G interaction, with the result that the

0.0

0.5

1.0

1.5

2.0

48 48
Ti

54 54
Fe

54 54
Cr

w/o isoscalar pairing
w/ isoscalar pairing
exact solution

M
0

νν

G
T

FIG. 1. GCM results for the Gamow-Teller part of 0⌫��
matrix elements of 48Ca, 54Ti, and 54Cr, compared with the
results of exact diagonalization.

matrix element decreases, coming quite close to the ex-
act one. The sensitivity to isoscalar pairing, pointed out
long ago for the QRPA in Refs. [28] and [29] and more
recently for the GCM and shell model in Refs. [14] and
[16], shows that the neutron-proton mixing in our HFB
states is essential. The good agreement with exact diag-
onalization suggests that once it is included, we are not
omitting anything of importance.

We turn now to one of the nuclei in which we are really
interested: 76Ge, used or to be used in many �� experi-
ments [30–33]. Shell model calculations of the 0⌫�� de-
cay of this nucleus [5, 6, 34, 35] have usually been set in
the so-called f5pg9 space, comprising the 0f5/2, 1p3/2,
1p1/2, and 0g9/2 orbits, and have employed either the
JUN45 [36] or GCN2850 [37] Hamiltonian. The f5pg9
model space is not a complete major shell; it includes
levels from two di↵erent major shells and is missing, in
particular, the spin-orbit partners of the 0f5/2 and 0g9/2
orbits. We discuss the e↵ects of including these and other
orbits later.

As we already mentioned, both theory [38, 39] and
experiment [18, 40] indicate triaxial deformation in low-
lying states of even-even Ge and Se isotopes near A = 76.
Our calculations predict it as well. Figure 2 displays
the 76Ge and 76Se quantum-number-projected potential-
energy surfaces (PES’s), at isoscalar-pairing amplitude
� = 0, produced by the GCM with the GCN2850 inter-
action. The minimum is at �2 = 0.23, � = 24� in 76Ge,
a result that agrees well with those of EDF-based GCM
calculations [38], and at at �2 = 0.28, � = 45� in 76Se. In
addition to this “static” triaxial deformation, dynamical
triaxial e↵ects arise from the �-soft PES’s in both iso-
topes. The GCM, which mixes states with a range of �

The effect of isoscalar 
pairing is illustrated in 
The very recent work 
on  GCM for pf shell. 
The isoscalar pairing 
was here included and 
GCM result compared 
to the exact one. 
The final NME evaluated 
In GCM for 76Ge and 82Se 
in this work agree with 
NSM unlike the earlier 
results without the 
isoscalar pairing.  
 

Figure from Jiao et al. 
arXiv 1707.03940 
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IV. RESULTS IN TWO SHELLS

The promise of the Hamiltonian-based GCM is an
eventual ab initio calculation. Here we take a step in
that direction by working in the full fp � sdg two shell
space. The number of states for A = 76 nuclei in this
space is still too large for exact diagonalization.

Before considering Ge and Se, we make one more test,
for 48Ca, the one experimental candidate in which an
exact two-shell calculation is almost possible at present.
Ref. [4] uses the SDPFMU-DB interaction, with the omis-
sion of some cross-shell excitations, to compute the 0⌫��
matrix element nearly exactly. Our GCM result, 1.082, is
close to 1.073, the result of Ref. [4], and suggests in ad-
dition that the cross-shell excitations neglected in that
paper really are unimportant. With some confidence in
the performance of the GCM in two shells, we turn to
the decay of 76Ge.

The first issue we must grapple in this mid-shell nu-
cleus is what to use for the valence-space Hamiltonian.
Ref. [14] used a multi-separable collective Hamiltonian
that we wish to improve on here. The size of the two-
shell space, however, makes the usual procedure, in which
shell-model Hamiltonians are tuned to data, di�cult to
follow; furthermore, there are no well-tested Hamilto-
nians for this space on the market. The first step in
the usual approach is to produce an initial valence-space
Hamiltonian, traditionally in many-body perturbation
theory. Deficiencies in the many-body method are then
remedied by tuning single-particle energies and interac-
tion matrix elements to experimental data. Here we must
settle for adjusting only single-particle energies. The tun-
ing of interaction matrix elements requires repeated cal-
culations that are simply too time consuming.

Although nonperturbative methods such as the in-
medium similarity renormalization group can produce
shell-model Hamiltonians [42, 43], they have not been
tested systematically for valence spaces larger than one
major harmonic-oscillator shell. We therefore use the Ex-
tended Krenciglowa-Kuo (EKK) variant of many-body
perturbation theory [17], suitable for non-degenerate va-
lence spaces, to construct an e↵ective Hamiltonian from
a third-order Q-box in the pf �sdg shell. We begin from
the 1.8/2.0 two- plus three-nucleon (3N) interaction of
Refs. [44, 45]; the interaction reproduces ground-state
energies across the light- and medium-mass regions of
the nuclear chart [46]. With ~! = 10 MeV, a space of
13 major shells for intermediate-state sums is enough to
ensure convergence.

The monopole components of our valence-space Hamil-
tonian are particularly sensitive to the initial three-
nucleon interaction [47], which one generally reduces to
e↵ective zero-, one- and two-body parts via normal or-
dering with respect to some independent-particle refer-
ence state [48]. For shell model calculations, the usual
reference state is the inert core, containing all orbitals
below the valence space. As discussed in Refs. [49, 50],
however, this choice completely omits three-nucleon in-
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FIG. 4. The occupancies of valence neutron and proton or-
bits produced by the interaction pfsdg (see text) for 76Ge and
76Se, following the adjustment of the single-particle energies
for levels in the lower shell. The measured occupancies are
from Refs. [51, 52].

teractions among the valence particles themselves, and
if the target nucleus (here 76Ge or 76Se) is far from the
core, the neglected e↵ects become sizable. Since we can
choose to normal-order with respect to any reference we
want, it makes sense to include more orbitals, so that we
better capture the bulk e↵ects of three-nucleon interac-
tions among valence particles. Thus, we take the refer-
ence state to be the (fictional) inert core corresponding to
56Ni. While this nucleus is still some distance in proton
and neutron number from the A = 76 nuclei, we expect it
to make a better reference than than the 40Ca core. We
call the resulting valence-space interaction pfsdg and use
it exclusively in the following.

Perhaps because of the non-ideal reference state, the
single-particle energies that emerge from the perturba-
tive procedure are poor. The proton sub-shell gap at
Z = 34 is too large, causing the proton pairing mean

This work, unlike some of the 
previous calculations, also is able 
to reproduce well the experimental 
occupations of individual orbits. 
The measurement of occupancies 
was pioneered by J. P. Schiffer 
et al., see Phys. Rev. Lett. 100,  
112501, and Phys. Rev. C79, 021301. 
 



Conclusions from the spread in calculated values: 
 
1)  It is difficult to decide which of the nuclear models used  
     until now is most realistic. 
2)  We have reasons to believe that the NSM, which gives  
     consistently the smallest values, might be an underestimate. 
3)  In analogy, the EDF approach, which gives the largest values, 
     is very likely an overestimate, at least the versions without 
     the isoscalar pairing. 
4)  However, all model evaluations agree that there is no abrupt  
     change in magnitude from one candidate nucleus to another one.  
     Thus, at least from that point of view, there is no obvious  
     advantage or disadvantage in using any of them. 
 
However, we cannot exclude the possibility that all 
of the evaluations used so far leave out a common 
problem that may affect all of them. In fact, the 
quenching of the axial current matrix elements is an 
example of such an issue.   



At this time the most widely discussed source of 
uncertainty is the ``effective” value of the axial 
current coupling constant gA. 
 
From the free neutron β decay the gA = 1.27 is determined.  
However, it is possible, and there is some evidence, that  
in the nuclear many-body systems the effective values of gA 
is different, and possibly smaller. 
 
The decay rate of the 2νββ  mode is purely axial vector 
and thus proportional to gA

4. 
For the 0νββ decay, the axial current part is still  
Dominating, though not pure GT any more. Thus any  
modification of gA in heavy nuclei 
could affect the calculated half-life substantially. 



From E. Caurier, F. Nowacki and A. Poves, Phys. Lett. B711, 62 (2012) 
Since the 2νββ decay is simply two GT decays happening at once, the rate is proportional 
to gA

2. Thus, by choosing gA
eff = q gA, with q < 1 so called quenching factor, it is possible 

to phenomenologically account for any discrepancy.  
 
In M. Horoi and B.A.Brown, arXiv:1301.0256 more single-particle states were 
included, so that the Ikeda sum rule was obeyed. For 136Xe 2ν matrix element 
the M2ν = 0.020 MeV-1 was then obtained with quenching q=0.74. So, the inclusion 
of spin-orbit partners reduces the quenching value to more acceptable values.  
 
In Corraggio et al. (1703.05087) the 2νββ decay in 130Te and 136Xe was treated in 
a realistic shell model, and q ~ 0.65 was required, less than above. 
 



Quenching	of	GT	matrix	elements	deduced	from	the	β	decay	
of	the	sd	shell	nuclei	(A	=	17-39).	Comparison	between	the	calculated	
and	experimental	strength.	Typical	reducOon	~0.77.	
It	is	remarkable	that	one	parameter	is	sufficient	
to	bring	the	experiment	and	theory	in	agreement		
	over	a	wide	region	of	nuclei.	
(from	Brown	&	Wildenthal,	Ann.Rev.Nucl.	Part.Sci.38,(1988)29)		

Other	quenching		
factors	
q	=	gAeff/gA	
q	=	0.744	±	0.015	pf	
q	=	0.77	±	0.02	sd	
q	=	0.82	±	0.02	p	



When the rate of ordinary β decay is calculated in the nuclear shell model, 
the corresponding theoretical Gamow-Teller matrix elements are typically 
larger than their experimental values. Their ratio, however, is nearly constant 
for a given group of nuclei, when the valence nucleons are in a specified shell. 
 
 
To account for that effect the quenching factor q < 1 is introduced, that  
reduces the matrix elements of the GT operator στ . A convenient way to 
handle that is to pretend that the coupling gA  is reduced to qxgA . 
 
Note that the total GT strength, the sum of squares of m.e. over all 
final states is constrained by the model independent Ikeda sum rule 
 
S(β-) – S(β+) = 3(N-Z) , i.e. S(β-) > 3(N-Z) 
 
That sum rule is fulfilled in theory if all single particle states of an 
oscillator shell are included in the calculation, including the spin-orbit 
partners. It is, however, not clear whether the Ikeda sum rule is 
actually obeyed in real nuclei.   

Quenching of the axial current operator 



The crucial question: Is the quenching needed in 0νββ?
Are the quenching factors similar to those of 2νββ?

Since the MGT gives the largest contribution to M0ν, 
the 0νββ rate is approximately proportional to gA

4. 
 
Warning: If quenching of q=0.45 is needed, the <mββ> 
           sensitivity is reduced by q2 = 0.2, i.e. 5 times. 

Remember, in 2νββ only intermediate 1+ states participate and the  
momentum transfer q ~ few MeV. 
In 0νββ many multipoles contribute and q ~ 100-200 MeV. So the  
answer to that question is not straightforward. 
 
What about weak processes with other multipolarities, e.g. forbidden 
β decays or µ capture? Are they quenched?



Muon capture on nuclei, 
µ- + (Z,A) -> νµ + (Z-1, A). 
 
Calculation using RPA 
(see N. Zinner, K.Langanke and 
P. Vogel, Phys. Rev. C74, 024326(2006)) 
 
This process is dominated 
by dipole transitions. 
No quenching is required. 
In fact, using gA = 1.0 
would underestimate the 
rate by ~0.75. 
	

Ratio for gA = 1.0 



From Ejiri et al., Phys. Lett. B729, 27 (2014)  

Matrix elements for unique first forbidden 2- -> 0+ β decays in medium mass nuclei.  
The plotted ratio is Mexp/MQRPA for both β- and β+ decays. 



Determination of the quenching factor q = gA
eff/gA  

from the 2νββ decay experimental matrix elements 
 
1)  In NSM q ~ 0.74 is obtained when the full oscillator shell is included 
2)  In QRPA there is no prediction. The isoscalar interaction constant gpp 
     is adjusted so that the 2νββ experimental half-life is obtained. 
3) In EDF it is impossible, so far, to evaluate the spectrum of 1+ states 
    in the virtual intermediate odd-odd nucleus. Thus evaluation of M2ν, 
    without closure, is impossible. 
4) The same is true in IBM-2. However, the authors, Barea et al., 
     Phys. Rev. C 87, 014315 (2013)	argue that the closure approximation  
     might be acceptable and obtain quenching factors that are typically  
     smaller than in ISM, e.g. for 136Xe qIBM-2 = 0.41. Note, that this is  
     obtained by assuming that the average energy denominator is  
     E = 1.12 A1/2 MeV, roughly the energy of the giant GT resonance.  
     The QRPA and/or NSM do not support this assumption. 



One of the suggested explanations of quenching as due to 
the two-body currents (see Menendez, Gazit, and Schwenk, PRL 
107, 062501 (2011)) 
(This is related to the older ideas of couplings nucleons to the Δ isobars) 
 
 
Using chiral effective field theory they derive expressions for a significant, 
and momentum dependent, modification of the axial weak current effective 
coupling. See also Klos, Menendez, Gazit, and Schwenk PRD 88, 083516 for 
more developments of these ideas. 

Chiral Two-Body Currents in Nuclei: Gamow-Teller Transitions
and Neutrinoless Double-Beta Decay
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We show that chiral effective field theory (EFT) two-body currents provide important contributions to

the quenching of low-momentum-transfer Gamow-Teller transitions, and use chiral EFT to predict the

momentum-transfer dependence that is probed in neutrinoless double-beta (0!"") decay. We then

calculate for the first time the 0!"" decay operator based on chiral EFT currents and study the nuclear

matrix elements at successive orders. The contributions from chiral two-body currents are significant and

should be included in all calculations.
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Weak interaction processes provide unique probes of the
physics of nuclei and fundamental symmetries, and play a
central role in astrophysics [1]. The structure of strongly
interacting systems is explored with " decays and weak
transitions. Superallowed decays allow high precision tests
of the standard model, and neutrinoless double-beta (0!"")
decays probe the nature of neutrinos, their hierarchy, and
mass. Weak processes mediate nuclear reactions that drive
stellar evolution, supernovae, and nucleosynthesis.

Surprisingly, key aspects of well-known decays remain a
puzzle. In particular, when calculations of Gamow-Teller
(GT) transitions of the spin–isospin-lowering operator
gA!#! are confronted with experiment, some degree of
renormalization, or ‘‘quenching’’ q, of the axial coupling
geffA ¼ qgA is needed. Compared to the single-nucleon
value gA ¼ 1:2695ð29Þ, the GT term seems to be weaker
in nuclei. This was first conjectured in studies of "-decay
rates, with a typical q % 0:75 in shell-model (SM) calcu-
lations [2] and other many-body approaches [3]. In view of
the significant effect on weak reaction rates, it is no sur-
prise that this suppression has been the target of many
theoretical works. It is also a major uncertainty for 0!""
decay nuclear matrix elements (NMEs), which probe larger
momentum transfers of order the pion mass, p&m$,
where the renormalization could be different. Here we
revisit this puzzle based on chiral effective field theory
(EFT) currents.

Chiral EFT provides a systematic basis for nuclear
forces and consistent electroweak currents [4,5], where
pion couplings contribute both to the electroweak axial
current and to nuclear interactions. This is already seen
at leading order: gA determines the axial one-body (1b)
current and the one-pion-exchange nucleon-nucleon (NN)
potential. Two-body (2b) currents, also known as meson-
exchange currents, enter at higher order, just like
three-nucleon (3N) forces [4]. As shown in Fig. 1, the
leading axial contributions are due to long-range

one-pion-exchange and short-range parts [5], with cou-
plings c3, c4, and cD, which also enter the leading 3N
(and subleading NN) forces [4,6]. Although the importance
of 2b currents is known from phenomenological studies
[7], chiral currents and the consistency with nuclear forces
have only been explored in the lightest nuclei [5,6,8]. In
this Letter, we present first calculations for GT transitions
and for the 0!"" decay operator based on chiral EFT
currents. A preview of the NMEs (Fig. 2) and the quench-
ing of gA (Fig. 3) shows the great importance of using
chiral 2b currents in nuclei.

In chiral EFT, the nuclear current J%y
L is organized in an

expansion in powers of momentum Q&m$ over a break-
down scale !b & 500 MeV. Consistently with nuclear
forces [4], we count the nucleon mass as a large scale,
corresponding numerically to Q=m& ðQ=!bÞ2, so that the
leading relativistic 1=m corrections are of order Q2, and
1=m2 terms of order Q4. To order Q2 (and also Q3 in this

counting), the 1b current, J%y
L ðrÞ ¼ PA

i¼1 #
!
i ½&%0J0i;1b !

&%kJki;1b(&ðr! riÞ, has temporal and spatial parts in mo-

mentum space [5]:

J0i;1bðp2Þ ¼ gVðp2Þ ! gA
P ) !i

2m
þ gPðp2ÞEðp ) !iÞ

2m
; (1)

Ji;1bðp2Þ ¼ gAðp2Þ!i ! gPðp2Þpðp ) !iÞ
2m

þ iðgM þ gVÞ
!i + p

2m
! gV

P

2m
; (2)

FIG. 1. Chiral 2b currents and 3N force contributions.
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Chiral two-body currents 
and the 3N force depend on 
the same couplings. Their 
values are taken from the 
previous works.  

For a variety of c3 and c4 values and cD = 0 the quenching  
q = 0.66 – 0.85 is obtained for realistic nuclear densities.  



Application of chiral two body currents to the evaluation of M0νββ 
nuclear matrix elements within the QRPA. 
(Simkovic, Engel, Vogel, Phys.Rev. C89 (2014), 064308 ) 
 
The 2b currents are included, together with isospin restoration.  
The resulting M0νββ are reduced by ~20%, while M2νββ are  
reduced by 66% compared to the unquenched  
(i.e. one-body currents only) results. The reduction of M0νββ 
is somewhat less than in the shell model due to the usual gpp  
adjustment, even though the effect is rather small. 

Note the steep dependence of 
M2νββ on gpp and the mild  
dependence of M0νββ  . 
The values gpp = 0.897 and 0.870 
are the values that reproduce  
the experimental M2νββ  without 
and with 2b currents. 



Can we make any conclusions regarding gA quenching?  
 
1)  Not really. However, all available evidence suggests that the 

M0ν evaluated with gA = 1.27, i.e. without quenching, is an 
overestimate. 

2)  The real issue is whether the matrix elements should be 
reduced by 20-30% or by a factor of of 3-5. The former 

     would make experiments more difficult but still doable,  
     the latter one would be a game changer. 
3)   Clearly, this is a crucial issue that needs a convincing solution.  


